On the general solution for a 'diagonal' vacuum Bianchi type III model with a cosmological constant

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1982 J. Phys. A: Math. Gen. 151757
(http://iopscience.iop.org/0305-4470/15/5/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $31 / 05 / 2010$ at 06:14

Please note that terms and conditions apply.

COMMENT

On the general solution for a 'diagonal' vacuum Bianchi type III model with a cosmological constant

M A H MacCallum \dagger, A Moussiaux \ddagger, P Tombal \ddagger and J Demaret§
\dagger Department of Applied Mathematics, Queen Mary College, London, UK
\ddagger Département de Physique, Facultés Universitaires, Namur, Belgium § Institut d'Astrophysique, Université de Liège, Cointe-Ougrée, Belgium

Received 3 December 1981

Abstract

The particular Bianchi type III solution given in a recent letter by Moussiaux et al is shown to be contained in a general solution for locally-rotationally-symmetric hypersurface-homogeneous models given by Cahen and Defrise.

One of us (MM) has noted that the particular solution for a 'diagonal' vacuum Bianchi-III model with a cosmological constant, given in a recent letter (Moussiaux et al 1981, referred to as MTD), is not new. In fact, the solutions (13a) and (13b) in MTD (respectively for $\Lambda>0$ and $\Lambda<0$), which are locally rotationally symmetric, are particular cases of a solution given in tables 11.1 and 11.2 of Kramer et al (1980) (referred to as KSMH): they are characterised geometrically by the action of an isometry group G_{4} on a three-dimensional space-like manifold.

More explicitly, solutions (13a) and (13b) in MTD are of the form of (11.3) (with $k=-1$ and $\varepsilon=-1$) of кSMн, i.e.

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+A^{2} \mathrm{~d} x^{2}+B^{2}\left(\mathrm{~d} y^{2}+\sinh ^{2} y \mathrm{~d} z^{2}\right) \tag{1}
\end{equation*}
$$

with A, B functions of t.
As pointed out by \AA Aman and Karlhede (1980), the coordinates y and z can be transformed into x^{1} and x^{2}, as used in MTD, changing the two-dimensional metric $\mathrm{d} y^{2}+\sinh ^{2} y \mathrm{~d} z^{2}$ into $\left(\mathrm{d} x^{1}\right)^{2}+\exp \left(-4 a_{0} x^{1}\right)\left(\mathrm{d} x^{2}\right)^{2}$ of equation (8) of MTD.

Moreover, the metric (1) can be put in new coordinates w, u, ζ and $\bar{\zeta}$ as (cf Ksmh, equation (11.11))

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{\mathrm{d} w^{2}}{f(w)}-f(w) \mathrm{d} u^{2}+\left(\frac{2 \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta}}{\left(1-\frac{1}{2} \zeta \bar{\zeta}\right)^{2}}\right) Y^{2}(w) \tag{2}
\end{equation*}
$$

with $f<0$.
Solutions ($13 a$) and ($13 b$) of MTD can be put in a similar form as

$$
\begin{equation*}
\mathrm{d} s^{2}=Y^{2}(\tau)\left[-\mathrm{d} \tau^{2}+2 \mathrm{~d} \zeta \mathrm{~d} \bar{\zeta} /\left(1-\frac{1}{2} \zeta \bar{\zeta}\right)^{2}\right]+b^{2}(\tau)\left(\mathrm{d} x^{3}\right)^{2} \tag{3}
\end{equation*}
$$

with, in the case of $\Lambda>0$,

$$
\begin{equation*}
Y^{2}=\frac{12 a_{0}^{2}}{\Lambda\left\{\sinh \left[2 a_{0}\left(\tau-\tau_{0}\right)\right]\right\}^{2}}, \quad b^{2}=\left\{\tanh \left[2 a_{0}\left(\tau-\tau_{0}\right)\right]\right\}^{-2} . \tag{4}
\end{equation*}
$$

The general solution of (2) is given in KSMH as (cf equation (11.42); cf Cahen and Defrise (1968))

$$
\begin{equation*}
f(w)=w^{-2}\left(-w^{2}-2 m w-\frac{1}{3} \Lambda w^{4}\right), \quad Y^{2}(w)=w^{2}, \quad \text { and } m=\text { constant } \tag{5}
\end{equation*}
$$

Identifying now metrics (2) and (3), it is easy to check that metric (2) is of the form (3), with $m=0$ and $u=x^{3}$ and

$$
\begin{align*}
& Y^{2}=w^{2}=\frac{12 a_{0}^{2}}{\Lambda\left\{\sinh \left[2 a_{0}\left(\tau-\tau_{0}\right)\right]\right\}^{2}}, \\
& \frac{2 \sqrt{3} a_{0}}{\sqrt{\Lambda} \sinh \left[2 a_{0}\left(\tau-\tau_{0}\right)\right]} \mathrm{d} \tau=-\frac{\mathrm{d} w}{\left(1+\frac{1}{3} \Lambda w^{2}\right)^{1 / 2}} \tag{6}\\
& b^{2}=-f .
\end{align*}
$$

The solution ($13 b$) of MTD can be identified similarly.
On the other hand, choosing A_{1} as the new time variable in the general 'diagonal' Bianchi-III metric (equation (8) of MTD), the new form of this metric is
$\mathrm{d} s^{2}=-F^{2}\left(\mathrm{~d} A_{1}\right)^{2}+\left(A_{1}\right)^{2}\left(\mathrm{~d} x^{1}\right)^{2}+\left(A_{2}\right)^{2} \exp \left(-4 a_{0} x^{1}\right)\left(\mathrm{d} x^{2}\right)^{2}+A_{3}^{2}\left(\mathrm{~d} x^{3}\right)^{2}$
where F, A_{2} and A_{3} are functions of A_{1}.
Denoting the first derivative with respect to A_{1} by a prime, the corresponding independent field equations can be written as

$$
\begin{align*}
& \frac{A_{2}^{\prime}}{A_{2}}-\frac{1}{A_{1}}=0, \quad \frac{1}{A_{1}^{2} F^{2}}-\frac{2 F^{\prime}}{A_{1} F^{3}}-\frac{4 a_{0}^{2}}{A_{1}^{2}}-\Lambda=0 \tag{8}\\
& \frac{1}{F^{2}}\left(2 \frac{A_{3}^{\prime}}{A_{1} A_{3}}+\frac{1}{\left(A_{1}\right)^{2}}\right)-\frac{4 a_{0}^{2}}{A_{1}^{2}}-\Lambda=0
\end{align*}
$$

The general solution of this system of differential equations is easily found as

$$
\begin{equation*}
A_{2}=A_{1}, \quad F=\frac{1}{A_{3}}=\frac{1}{4 a_{0}^{2}+\frac{1}{3} \Lambda A_{1}^{2}+C / A_{1}} \tag{9}
\end{equation*}
$$

where C is an arbitrary constant, a solution in fact equivalent to the general solution of Cahen and Defrise (1968) (cf (5)).

Since the first of equations (8) implies $A_{1}=A_{2}$, it forbids the existence of non-locally-rotationally-symmetric 'diagonal' vacuum Bianchi-III models.

References

Åman J E and Karlhede A 1980 Phys. Lett. 80A 229
Cahen M and Defrise L 1968 Commun. Math. Phys. 1156
Kramer D, Stephani H, MacCallum M A and Herlt E 1980 Exact Solutions of Einstein's Field Equations ed E Schmutzer (Cambridge: Cambridge University Press)
Moussiaux A, Tombal P and Demaret, J 1981 J. Phys. A: Math. Gen. 14 L277

