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COMMENT

On the general solution for a ‘diagonal’ vacuum Bianchi
type III model with a cosmological constant
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t Département de Physique, Facultés Universitaires, Namur, Belgium
§ Institut d’Astrophysique, Université de Liége, Cointe-Ougrée, Belgium
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Abstract. The particular Bianchi type III solution given in a recent letter by Moussiaux
et al is shown to be contained in a general solution for locally-rotationally-symmetric
hypersurface-homogeneous models given by Cahen and Defrise.

One of us (MM) has noted that the particular solution for a ‘diagonal’ vacuum
Bianchi-III model with a cosmological constant, given in a recent letter (Moussiaux
et al 1981, referred to as MTD), is not new. In fact, the solutions (13a) and (135) in
MTD (respectively for A>0 and A <0), which are locally rotationally symmetric, are
particular cases of a solution given in tables 11.1 and 11.2 of Kramer et al (1980)
(referred to as KsMH): they are characterised geometrically by the action of an isometry
group G, on a three-dimensional space-like manifold.

More explicitly, solutions (13a) and (134) in MTD are of the form of (11.3) (with
k=-1and ¢ =—1) of KSMH, i.e.

ds’=—dr*+A?dx*+B*(dy*+sinh® y dz?) (1)

with A, B functions of .

As pointed out by Aman and Karlhede (1980), the coordinates y and z can be
transformed into x' and x?, as used in MTD, changing the two-dimensional metric
dy®+sinh’y dz? into (dx")* +exp(—4aox ') (dx*)’ of equation (8) of MTD.

Moreover, the metric (1) can be put in new coordinates w, u, { and ¢ as (cf KSMH,
equation (11.11))

R -
ds? =/f(‘;)—f(w) du2+((§%) Y3(w) @)
with £ <0.
Solutions (13a) and (134) of MTD can be put in a similar form as
ds®= Y (1) —dr* +2d{ d/(1-320)°1+ b*(r) (dx’)? (3)
with, in the case of A >0,
2 122 b% = {tanh[2ao(r — 1)1} 2 (4)

T A {sinh[2ao(r — 7o) I7
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The general solution of (2) is given in KsMH as (cf equation (11.42); cf Cahen and
Defrise (1968))

Flw)=w 2 (=w’>=2mw —3Aw"), Yiw)=w?, and m = constant. (5)

Identifying now metrics (2) and (3), it is easy to check that metric (2) is of the form
(3), with m =0 and u = x” and

Ve wie 12a5
A {sinh[2ao(r = 7o)}’
2J3 d
N 20 dr= ! - 20172 (6)
VA sinh[2ao(7 ~ 70)] (1+3Aw5)
b*=—f.

The solution (135) of MTD can be identified similarly.
On the other hand, choosing A, as the new time variable in the general ‘diagonal’
Bianchi-III metric (equation (8) of MTD), the new form of this metric is

ds’=-F*(dA)’ +(A)*(dx")’ + (A2)° exp(—4aox )(dx*)’ + Al(dx’)? (7)
where F, A, and A, are functions of A,.

Denoting the first derivative with respect to A, by a prime, the corresponding
independent field equations can be written as

Ay 1 1 2F 4a}
———=0, ——-——=—-—>-A=0,
A, A, AIF* AF A} ®)
1 A} 1 4a}
—(2 ——+———) —P2-A=0.
FZ( A A, (A)) A}
The general solution of this system of differential equations is easily found as
1 1

A2=A1, F =

- = 9
As 4aj+3AAT+C/A, )
where C is an arbitrary constant, a solution in fact equivalent to the general solution
of Cahen and Defrise (1968) (cf (5)).

Since the first of equations (8) implies A, = A,, it forbids the existence of non-
locally-rotationally-symmetric ‘diagonal’ vacuum Bianchi-III models.
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