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COMMENT 

On the general solution for a ‘diagonal’ vacuum Bianchi 
type I11 model with a cosmological constant 

M A H MacCallumt, A MoussiauxS, P TombalS and J Demarets 
t Department of Applied Mathematics, Queen Mary College, London, UK 
$ Dtpartement de Physique, Facultes Universitaires, Namur, Belgium 
8 Institut d’Astrophysique, Universite de Liege, Cointe-Ougree, Belgium 

Received 3 December 1981 

Abstract. The particular Bianchi type I11 solution given in a recent letter by Moussiaux 
er a1 is shown to be contained in a general solution for locally-rotationally-symmetric 
hypersurface-homogeneous models given by Cahen and Defrise. 

One of us (MM) has noted that the particular solution for a ‘diagonal’ vacuum 
Bianchi-I11 model with a cosmological constant, given in a recent letter (Moussiaux 
et a1 1981, referred to as MTD), is not new. In fact, the solutions (13a) and (136) in 
MTD (respectively for A > 0 and A < 0), which are locally rotationally symmetric, are 
particular cases of a solution given in tables 11.1 and 11.2 of Kramer er a1 (1980) 
(referred to as KSMH): they are characterised geometrically by the action of an isometry 
group G4 on a three-dimensional space-like manifold. 

More explicitly, solutions (13a) and (136) in MTD are of the form of (11.3) (with 
k = -1 and E = -1) of KSMH, i.e. 

d s 2 = - d f 2 + A 2 d x 2 + B 2  (dy2+sinh2 y dz’) (1) 

with A, B functions of t. 
As pointed out by Aman and Karlhede (1980), the coordinates y and z can be 

transformed into x1 and x2, as used in MTD, changing the two-dimensional metric 
dy’+sinh’y dz2  into (dx’)’+exp(-4aox1) (dx2)’ of equation (8) of MTD. 

and r as (cf KSMH, 
equation (1 1.1 1)) 

Moreover, the metric (1) can be put in new coordinates w, U ,  

with f C 0. 
Solutions (13a) and (13b) of MTD can be put in a similar form as 

ds2=  YZ(7)[-d7’+2 d5  df/(1 -$5f)’]+b2(7) (dx3)’ (3) 

with, in the case of A > 0, 

12a; y’ = 6’ = {tanh[2ao(~ - To)]}-’. 
A {sinh[2a0(~ - 70)]}” (4) 
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The general solution of (2) is given in KSMH as (cf equation (11.42); cf Cahen and 
Defrise (1968))  

f ( w ) =  w -  ( - w  - 2 m w - 5 A w  ), 

Identifying now metrics ( 2 )  and (3), it is easy to check that metric (2) is of the form 
(31, with m = 0 and U = x 3  and 

Y 2 ( w )  = w 2 ,  and m = constant. ( 5 )  2 2  1 4  

dw 
(1 + f A ~ ~ ) l ’ ~ ’  

dT = - 
2&ao 

JX s inh[2ao(~  - To) ]  

2 b =-f. 
The solution (136)  of MTD can be identified similarly. 

Bianchi-I11 metric (equation ( 8 )  of MTD), the new form of this metric is 
On the other hand, choosing A1 as the new time variable in the general ‘diagonal’ 

ds2 = -F2(dAl)2+(A1)2(dx’)2+(A2)2 e ~ p ( - 4 a ~ x ’ ) ( d x ~ ) ~ + A : ( d x ~ ) ~  (7 )  

where F, A2 and A3 are functions of A l .  

independent field equations can be written as 
Denoting the first derivative with respect to A I  by a prime, the corresponding 

1 2F’ 4a i  
A:F2 A1F3 A: 

A = 0,  A; 1 
A2 Ai 

0 ,  ---= 

A = 0. 

The general solution of this system of differential equations is easily found as 

( 9 )  

where C is an arbitrary constant, a solution in fact equivalent to the general solution 
of Cahen and Defrise (1968)  (cf ( 5 ) ) .  

Since the first of equations ( 8 )  implies A I  = A Z ,  it forbids the existence of non- 
locally-rotationally-symmetric ‘diagonal’ vacuum Bianchi-I11 models. 

1 1 F = - =  
A3 4a i  ++AA: +CIAl  A2=A1, 
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